Computer-Assisted Characterization of Prostate Cancer on Magnetic Resonance Imaging

نویسندگان

  • Derek J. Soetemans
  • G. S. Bauman
  • E. Gibson
  • M. Gaed
  • J. A. Gomez
  • M. Moussa
  • J. L. Chin
چکیده

Prostate cancer (PCa) is one of the most prevalent cancers among men. Early diagnosis can improve survival and reduce treatment costs. Current inter-radiologist variability for detection of PCa is high. The use of multi-parametric magnetic resonance imaging (mpMRI) with machine learning algorithms has been investigated both for improving PCa detection and for PCa diagnosis. Widespread clinical implementation of computerassisted PCa lesion characterization remains elusive; critically needed is a model that is validated against a histologic reference standard that is densely sampled in an unbiased fashion. We address this using our technique for highly accurate fusion of mpMRI with whole-mount digitized histology of the surgical specimen. In this thesis, we present models for classification of malignant, benign and confounding tissue and aggressiveness of PCa. Further validation on a larger dataset could enable improved classification performance, improving survival rates and enabling a more personalized treatment plan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal Intensity of High B-value Diffusion-weighted Imaging for the Detection of Prostate Cancer

Background: Diffusion-weighted imaging (DWI) is a main component of multiparametric MRI for prostate cancer detection. Recently, high b value DWI has gained more attention because of its capability for tumor characterization. Objective: To assess based on histopathological findings of transrectal ultrasound (TRUS)-guided prostate biopsy as a reference, an...

متن کامل

Optimization of clinical target volume delineation using magnetic resonance spectroscopic imaging (MRSI) in 3D conformal radiotherapy of prostate cancer

Background: For the purpose of individual clinical target volume assessment in radiotherapy of prostate cancer, MRSI was used as a molecular imaging modality with MRI and CT images. Materials and Methods: The images of 20 prostate cancer patients were used in this study. The MR and MRSI images were registered with CT ones using non-rigid registration technique. The CT based planning (BP), CT/MR...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Prostate cancer: multiparametric MR imaging for detection, localization, and staging.

This review presents the current state of the art regarding multiparametric magnetic resonance (MR) imaging of prostate cancer. Technical requirements and clinical indications for the use of multiparametric MR imaging in detection, localization, characterization, staging, biopsy guidance, and active surveillance of prostate cancer are discussed. Although reported accuracies of the separate and ...

متن کامل

بررسی ارزش Diffusion Weighted Imaging در تصاویر MRI برای تشخیص سرطان پروستات

Background: Prostate cancer is the third leading cause of death and is the most common cause of cancer in elderly men. Regarding to the low accuracy of screening methods such as prostate-specific antigen (PSA), Digital Rectal Examination (DRE) and trans rectal ultrasound (TRUS) in detection and localization of tumor, Magnetic Resonance Imaging (MRI) and Diffusion Weighted Imaging (DWI) attracte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017